
Lectures no. 6 & 7 
 

Structural and Thermodynamic Properties of   
Nonideal Plasma by Monte Carlo method 

 
 

Pair  Correlation  Functions (Radial  Distribution  Functions) 
   

 A pair correlation function (PCF)  ( )g r  plays an important role in 
investigation of structural and thermodynamic (equilibrium) properties 
of a plasma.  This function measures the time-independent correlations 

between  the particles. More precisely,  ( )g r  is the probability that a 
particle is found at a distance  r  from any given (test) particle. In the 

spherical symmetric case when the function ( )g r  depends on distance 

i jr r r 
 

 between particles, this function is called  a radial distribution 

function (RDF). The pair correlation function for ideal and weakly 
nonideal plasma is easily calculated using well known integral equation 
methods (BBGKI chain, Ornstein-Zernike equation etc.).  In the case of 
nonideal (dense) plasma the approximative methods of theoretical 
physics are not effective due to the  absence of small parameters in the 
system. Therefore the computer simulation by the Monte Carlo method 
is applied for investigation of structural and thermodynamic properties 
of a dense plasma.  
 

 Algorithm for calculation of     ( )g r . 
 

1. For each particle its surrounding space is divided into spherical 
layers with thickness  r . For simplicity  0 / 2r L  . 

2. To calculate the number of particles  ( )N r  in  each layer. 
3. The averaging of obtained results by all particles in any 

configuration. In this case we use the normal (arithmetical mean) 
averaging. 

4. The averaging of obtained results for all configurations of 
Markov’s chain. In this case we use the weight function  averaging 
with the Boltzmann factor.  



5. Then the average number of particles  ( )N r   situated at a 
distance between   r  and  r r   from a given particle can be 
calculated by the following formula: 
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here  iU   is the average potential energy of configuration;  M  is 
the number of equilibrium configurations from “stationary” part of 
MC computer simulation “control card”. 

6. Finally, the pair correlation function (radial distribution function) 
is defined by the following expression: 
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It should be noted that for a plasma we have the set of pair correlation 

functions   ( )g r , where   ,    are the sorts of particles.    

 Discussion of results for  ( )g r .  

 The results for radial distribution function of dense semiclassical 
hydrogen plasma obtained by Monte Carlo method are presented in 
Figures 1 – 5. At  1  we have a monotonic (Debye-like) character of  

( )g r .  Fluctuations of  ( )eeg r   at  0,8   do not have any physical 
meaning and are within the range of statistical errors (Fig.1).  

In Figure 2  the electron-ion  radial distribution functions  ( )eig r  
at different values of coupling parameter are shown. Notice that the 

values of  ( )eig r  for   0,8   are situated above than corresponding 
values at  0,5   and  0,3  . From physical point of view this fact 
means that the probability of finding of an electron-ion pair at the 
intermediate distance increases with increasing of the coupling 
parameter (increase of plasma density).   In other words with increase of 
plasma density the probability of formation of electron-ion pair 
(probability of recombination) rapidly increases at intermediate and 
small interparticle distances.   



Figure 1. Electron-electron radial distribution functions 
for  dense semiclassical plasma  at  1sr . 
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Figure 2. Electron-ion radial distribution functions 
for  dense semiclassical plasma  at  1sr . 
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It should be noted that we have the opposite situation for ion-ion 
correlation functions  ( )iig r  (see, Fig. 3). In this case the values of  

( )iig r  decrease with increasing of the coupling parameter (increasing of 
plasma density). This fact is connected with increasing of the probability 
of finding of like (repulsive) particles at increasing of plasma’s density 
(or coupling parameter).  It is seen from Fig.3 that the minimal nonzero 
probability of  finding of ion-ion pair is observed at relatively large 
values of interparticle distances with increasing of   . This fact can be 
explained by relative increasing of average distances between ions (as a 
repulsive particles) with increasing of plasma density.  
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Figure 3. Ion-ion radial distribution functions 
for  dense semiclassical plasma  at  1sr . 

 
 
 
 



 Let us discuss the behavior of RDF  at )101(  . For 1  we 
have the monotonic (Debye-like) character of )(rgee  (see, Fig. 4). It 
should be noted that at 3   )(lim

0
rgee

r
 tends to the constant (nonzero!) 

value. This fact can be explained as follows. With increasing of coupling 
parameter it is necessary to take into account the interaction between 
electrons with anti-parallel spins due to the symmetry effect (the Pauli 
bloking principle).  The extremums of  )(rgee  are related with the 
formation of quazi-bound states in the dense plasma.   
 The ion-ion radial distribution functions are presented in Figure 5. 
It is seen that these functions have  pronounced peaks at 5 . This fact 
can be explained by formation of ordered structures in  dense plasma 
(see, Fig.6).  

Figure 4. Electron-electron radial distribution functions 
for dense semiclassical plasma  at  1sr . 
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Figure 5. Ion-ion radial distribution functions 

for dense semiclassical plasma  at  1sr . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Formation of ordered structures 
in dense semiclassical plasma. 

 



Static  Structural Factors of the System 
 
 The static structural factor (SSF) also plays an important role in the 
investigation of microscopic properties of plasma. Knowing the radial 
distribution functions,  SSF can be defined in the following form: 
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where  k  is the wave vector; e in n n   is the density number. As an 
example, SSF for  dense semiclassical plasma is presented in Figure 7. 
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Figure 7. Static structural factors 
for a dense semiclassical plasma 

 
 
 

 
 
 
 



Thermodynamic  Properties  of    Plasma 
 
 We can define all thermodynamic properties of a plasma on the 
basis of the radial distribution functions. For instance, the equation of 
state  ( , ) ( , )sP F V T f r    can be calculated by the following 
formula: 
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 The internal energy is calculated as follows: 
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The excess part of the internal energy is given on the basis of the static 
structural factors by the following expression: 
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where  )(
~

k  is the Fourier transform of the potential.  
In Figures 8 and 9 the results for excess internal energy and 

equation of state of  dense semiclassical plasma are presented. The MC 
simulation results have a reasonable agreement with the Debye’s 
asymptotic theory at  1  and the data  of Ishimaru et al., and Pierleoni 
et al. at another values of coupling parameter.   

 
 
 
 
 
 
 
 



 
Figure 8. Excess internal energy of a dense semiclassical plasma. 

1 – Pierleoni et al.; 2 – the Debye’s asymptotic dependence; 3- MC 
simulation of Ramazanov et al.    

 

 
Figure 9. Equation of state of a dense semiclassical plasma. 1 –

interpolation formula of Ishimaru et al.; 2 – the Debye’s asymptotic 
dependence; 3- MC simulation of Ramazanov e.a.; 4 - Pierleoni et al.  
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